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MAPPING 

I T is said that R. A. FISHER, on first meeting  the 
MORGAN group of Drosophila geneticists, asked, 

“Why  don’t you people ever do a proper mapping 
experiment?”  This, to  the  group  that invented linkage 
maps, seems like asking Shakespeare or Shaw why he 
never  learned to use the English language. I don’t 
know whether the  anecdote is true,  but if it is, one 
can easily guess that FISHER had  three things in mind.’ 
First, the MORGAN group paid little attention  to esti- 
mating statistical errors. Second, they never  did the 
kind of balanced experiment  that FISHER advocated, 
i .e. ,  using two matings in  which the heterozygous 
parents  are in opposite linkage phases, so that viability 
differences cancel (although MULLER thought of it). 
Third, they ordinarily  made no distinction between 
the  percent of recombination and  map distance. 

The Drosophila group did  experiments involving 
large  numbers  under fairly standardized  environmen- 
tal conditions, which reduced statistical errors. But 
the  mutant phenotypes were almost always  less viable 
than wild type. When viability differences were large, 
the  experimenters  made  arbitrary corrections, or de- 
vised  special tricks. For  example, they could keep 
deleterious recessives heterozygous and identify gen- 
otypes by progeny tests, although this was extremely 
laborious. A serviceable alternative, if interactions 
were small, was BRIDGES’ procedure of alternating 
mutant  and wild-type alleles along  the  chromosome. 
Finally, the strategy was to build up  the map by 
combining distances between adjacent  genes, and as 
the  map became more dense,  undetected  double cross- 
overs were decreasingly important. So FISHER’S re- 
finements,  although they might have improved effi- 
ciency, made little difference in the long run. 

FRANK STAHL (1989)  referred  to these two ap- 
proaches as the American and  the British. The Amer- 
ican style was to use brute  force, collecting so many 
mutant  genes  that  the  intervals  between  adjacent pairs 
were small. The cunning British used a  mapping  func- 
tion to  correct for undetected  multiple crossovers. 

’ I would enjoy  hearing from anyone  who  can offer any  information  as  to 
the  truth of this story. 
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FUNCTIONS 

Thus, fewer  markers were needed  and  the lesser 
effort “leaves time for tea.” 

Balanced experiments  to  correct  for  interactions 
among viability factors are particularly  neat. Suppose 
two matings are made in equal  numbers,  (1) AB/ab X 

ab/ab and (2) AblaB X ablab, and let R1, NI,  R2 and 
N2 be  the expected  proportion of recombinants and 
nonrecombinants in the two experiments.  Suppose 
further  that  the viability of Ab + aB phenotypes is v 
relative that  that of AB + ab. Then  the  expected  ratio 
of recombinants, r,  to nonrecombinants, 1 - r,  in the 
combined  experiments is JRIvRpININ2u and  the via- 
bility factor, u, cancels out regardless of interactions. 
Equating the  corres  onding  function of the observed 
proportions, + R1R2/N1N2, to r/( 1 - r )  gives a consist- 
ent estimate of r.  A simple formula  for the variance 
of r is available (FISHER 1949a, p. 221ff). The two 
matings also permit  direct estimates of the viabilities. 
Extension to  three factors is straightforward,  but  four 
balanced matings are required. Such an  experiment 
was carried  out in mice by MARGARET WALLACE (see 
FISHER 1949b). In a way the result was an anticlimax, 
because there were no detectable viability differences. 
Such experiments have not  been the practice in Dro- 
sophila. One reason is that most Drosophila mapping 
experiments involve multiple  markers, and  the num- 
ber of matings required  for  a  balanced  experiment 
doubles with each added  marker. 

The MORGAN school and its successors throughout 
the Drosophila world have not  made use of mapping 
functions. The group was, of course, keenly aware 
that  there were  multiple  exchanges and  that  the  pro- 
portion of recombinants was not  linear with map 
distance when the distances were  large; and MULLER 
had  defined  coincidence and  interference.  In  the early 
days, before  the  map  became  dense,  corrections for 
undetected  multiple crossovers would have been use- 
ful. HALDANE’S (1 9 19)  pioneering  paper was ignored, 
however. 

Following HALDANE’S  procedure, let r be the  pro- 
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portion of recombinants and m the  map distance in 
morgans. His formula is then 

dr  - = 1 - 2cr 
dm 

in  which c is the coincidence, (actual double cross- 
overs)/(number  expected with no  interference). Inci- 
dentally, this paper also added  to  the vocabulary of 
genetics: here  HALDANE  proposed  “that  the  unit of 
distance in a  chromosome . . . be  termed  a  ‘morgan,’ 
on  the analogy of the  ohm, volt, etc. Morgan’s unit of 
distance is therefore  a  centimorgan.” 

HALDANE  noted  that when c = 0, as is true  for 
closely linked genes,  then 

r = m  ( 2 )  

and recombination  percent and map distance are  the 
same. He also noted  that  as  the distance increases, c 
approaches 1. When c = 1, we get  the well known 
HALDANE mapping function 

= L(1 - e-2m 
2 ). (3) 

It is not fair to  HALDANE  to say that  he  thought of 
this as a realistic mapping  function,  for in this paper 
he showed that  the  already  quite extensive Drosophila 
data fell between the curves given by ( 2 )  and (3). A 
possible reason for  the  nonuse of mapping  functions 
may be  that  the  function  that  HALDANE  found  to best 
fit the  data was a very complicated one, with no 
theoretical  underpinning. 

Not  for  a quarter  century (KOSAMBI 1944)  did  a 
formula  appear that  caught  on. A natural  extension 
of constant c in Equation 2 is to let it be  a  function of 
r. KOSAMBI took the simplest and very reasonable  next 
step, making c a r. Letting c = 2r,  which  gives the 
correct values at r = 0 and  1, leads immediately to  the 
widely used KOSAMBI mapping  function 

1 r = Ftanh 2m. (4) 

This formula fits most data fairly well, or  at least well 
enough  for most purposes. I  think one reason  for its 
popularity is that tables of hyperbolic functions have 
long been readily available, and in precomputer days 
they saved a great deal of tedious calculation. Fur- 
thermore,  the  addition  rule for  adding  recombination 
values follows from  the  ordinary  rules of hyperbolic 
functions 

Devising different  mapping  functions has provided 
diversion, if not gainful employment,  for  a  number of 
mathematically inclined geneticists. Most  of the  earlier 
work in this area has been reviewed by BAILEY (1  96 1). 
Equation 1 has natural  extensions in several direc- 

tions, of  which I shall mention  three. FELSENSTEIN 
(1979) assumed that c increases linearly with r ,  but 
takes a value K when r = 0. This has the  advantage of 
permitting  “map  expansion” ( K  < 0) and “negative 
interference” ( K  > 1). Like the KOSAMBI function it 
has a simple addition  rule,  analogous  to  (5).  Its flexi- 
bility, which  may be  desirable  for some situations, can 
be undesirable  for  routine  mapping in higher  eukar- 
yotes if one wants c = 0 for  short distances; in this 
case the FELSENSTEIN and KOSAMBI formulas are  the 
same. For  a lucid and  entertaining discussion  of map- 
ping  functions in prokaryotes and references to  earlier 
work, see STAHL  (1989). 

A second, and  natural, extension is to let c be 
proportional  to  a  higher power of 2r. CARTER and 
FALCONER (1 95  1) assumed that c = (2r)3 and  preferred 
this for mouse data. A more  elaborate  formula by 
RAO et al. (1977) includes the KOSAMBI and CARTER- 
FALCONER formulas as special  cases. It has one adjust- 
able  parameter  and, when this is chosen optimally, the 
function gives a very good fit to  data  on  human 
chiasma frequencies. 

PASCOE and MORTON (1 987)  found  that  the  formula 
of RAO et al. gave a  better fit to  the Drosophila data 
than any of the  others  that I have mentioned.  They 
noted, however,  that  a simpler formula assuming c = 
(2r)‘ gave essentially the same results. The integrated 
form is given as Equation  3 in their  paper. Given that 
the  data lie between the equation with c = 2r and c = 
(2r)3,  then, as PASCOE and MORTON implied, it re- 
quires no  great intellectual leap to think of (2~)’. In 
fact I  had used this in an  elementary  textbook (see 
curve  C on p. 68 of CROW  1983). 

The analysis of PASCOE and MORTON (1987) 1s . re- 
assuring in that  the best fitting  formulas are the same 
for  data based on human chiasma frequencies as for 
recombination  data in Drosophila. Furthermore,  the 
high  interference  over  the  range 0-1 5 cm  in the 
mouse (KING et al. 1989) is consistent with c = (2r)‘, 
although  the  data  are insufficient to distinguish be- 
tween this and  the CARTER-FALCONER  function. 

In contrast to these  more or less empirical functions, 
there  are those that  depend  on specific, more mech- 
anistic assumptions. One such is the model of FISHER 
(1  948)  and  OWEN  (1  950), in  which exchanges  start at 
some point, say the  centromere, with an assumed 
probability distribution,  and subsequent  exchanges 
depend  on this and  on  an  interference  function. One 
feature of this model is that it permits greater  than 
50% recombination  for  certain  map distances. Some 
mouse data  support  this,  but  the question warrants 
further investigation. 

All of these  functions  overpredict the  number of 
triple and higher crossovers, suggesting higher-order 
interference  not  accounted  for in theories  developed 
from  three-locus models. This is strikingly evident in 
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7-point and 9-point crosses in Drosophila (PASCOE and 
MORTON 1987).  Furthermore, it is to be  expected 
that  there  are  telomere  and  centromere effects as well 
as local differences in coincidence, so that  no global 
mapping  function can be  correct  everywhere. An 
approach based on chiasma distributions has been 
advocated by GOLDGAR, FAIN and KIMBERLINC 
(1 989). Chiasmata serve two functions. One is extend- 
ing  the  evolutionary  advantages of recombination to 
genes on  the same chromosome. The  other is me- 
chanical, regularizing meiosis by reducing nondisjunc- 
tion. These functions may  call for  different  numbers 
and distributions of chiasmata, and  the existing values 
may be some sort of compromise  between conflicting 
optima. In any  event,  the chiasma distribution is far 
from  random, and taking this into account may well 
provide  a better  approach to mapping. 

The increasing practicality of human  multipoint 
mapping,  foreshadowed by BOTSTEIN et al. (1 980) and 
involving increasingly effective computer  routines 
(LANDER  and  GREEN  1987; LATHROP and LALOUEL 
1988), raises anew the question of mapping  functions. 
To write likelihood equations, one must make some 
assumption about  interference.  It is not clear (to me, 
at least) how much practical difference the specific 
interference assumption makes (see for  example 
LATHROP et al. 1985  and PASCOE and MORTON 1987). 
In any case it is comforting  that  the simple formula 
based on c = (27)’ works well in those circumstances 
in  which the  data are sufficient to test it, and it can be 
built into  computer  routines. T o  quote GOLDGAR, 
FAIN  and KIMBERLINC (1989), “Given the  enormous 
resources now being  devoted  to  mapping  and  sequenc- 
ing  the  entire  human  genome,  methods which pro- 
duce even a modest increase in efficiency are of 
value.” 

During the long  period when human linkage studies 
were making very little progress for want of sufficient 
markers,  the mouse map was progressing steadily. The 
pioneering  role  of J. B. S. HALDANE  and L. C. DUNN 
in getting this started,  and  the progress and improved 
methodology in the ensuing years, was reviewed in 
this  column  two  months ago (LYON 1990). Detailed 
comparative  mapping of murine  and  human  genes, 
now at  hand,  offers  exciting prospects. 

Linkage maps are a  step  toward physical maps. But 
they are more.  However  detailed the physical map, 
down to knowing the nucleotide  sequence, we require 
linkage information in many species for  the study of 
transmission genetics and  for analyzing phenotypes 
whose molecular basis is not  known. Human genetics, 
specifically, calls for ever better means of predicting 
the gametic output of persons of specified genotype. 

For this, chromosome maps and  interference func- 
tions will continue  to  be  needed. 

JAMES F. CROW 
Genetics Department 
University of Wisconsin 
Madison, Wisconsin 53706 
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